REVIEW: ANALISIS BETA-BLOCKERS MENGGUNAKAN METODE ELEKTROKIMIA

Firdha Senja Maelaningsih, Diah Permata Sari, Ayu Werawati

Abstract


Penggunaan obat golongan β-blockers sangat diatur di seluruh dunia karena sering disalahgunakan oleh para atlet untuk doping. Para atlet menggunakannya untuk meningkatkan performa karena dinilai dapat memiliki efek menurunkan denyut jantung dan mengurangi tremor. Selain itu, obat golongan β-blockers merupakan salah satu obat kardiovaskular yang paling banyak diresepkan. Analisis obat β-blockers dapat menggunakan beberapa metode. Metode yang paling sering digunakan untuk analisis obat golongan β-blockers adalah Kromatografi Cair Kinerja Tinggi (KCKT) dengan detektor Ultra Violet (UV) atau Mass Spectrometry (MS). Namun, KCKT merupakan metode yang kompleks, mahal, dan sulit. Selain itu, dalam penyiapan sampel diperlukan proses derivatisasi serta memerlukan waktu analisis yang lama. Metode lain yang dapat digunakan untuk analisis obat golongan β-blockers adalah metode elektrokimia. Metode elektrokimia merupakan suatu metode analisis obat yang penting karena sensitif, selektif, murah, serta dalam penyiapan sampel hanya melarutkan zat dalam perlarut yang tepat. Metode elektrokimia untuk analisis obat golongan β-blockers pada artikel ini terdiri dari tiga metode yaitu potensiometri, voltametri, dan amperometri

Keywords


Analisis; β-blockers; Elektrokimia

References


Arranz, A., Dolara, I., Fernández De Betoño, S., María Moreda, J., Cid, A., Francisco Arranz, J., 1999. Electroanalytical study and square wave voltammetric techniques for the determination of β-blocker timolol at the mercury electrode. Anal. Chim. Acta 389, 225–232. https://doi.org/10.1016/S0003-2670(99)00214-7

Barbosa, J., Sanz-Nebot, V., Torrero, E., 1991. Equilibrium constants and assay of bases in acetonitrile. Talanta 38, 425–432. https://doi.org/10.1016/0039-9140(91)80081-A

Barbosa, J., Sanz-Nebot, V., Torrero, M.E., 1990. Acid-base equilibria of β-blockers in acetonitrile. J. Pharm. Biomed. Anal. 8, 675–679. https://doi.org/10.1016/0731-7085(90)80101-T

Boes, E., 1991. Aplikasi Cara Voltametri Pelepasan Anodik untuk Analisis Logam Berat dalam Partikulat dari Udara. JKTI 1, 13–17.

Caron, G., Steyaert, G., Pagliara, A., Reymond, F., Crivori, P., Gaillard, P., Carrupt, P.A., Avdeef, A., Comer, J., Box, K.J., Girault, H.H., Testa, B., 1999. Structure-lipophilicity relationships of neutral and protonated β- blockers. Part I. Intra- and intermolecular effects in isotropic solvent systems. Helv. Chim. Acta 82, 1211–1222. https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8<1211::AID-HLCA1211>3.0.CO;2-K

Chailapakul, O., Aksharanandana, P., Frelink, T., Einaga, Y., Fujishima, A., 2001. The electrooxidation of sulfur-containing compounds at boron-doped diamond electrode. Sensors Actuators, B Chem. 80, 193–201. https://doi.org/10.1016/S0925-4005(01)00912-1

Chen, K., Zhang, Z.L., Liang, Y.M., Liu, W., 2013. A graphene-based electrochemical sensor for rapid determination of phenols in water. Sensors (Switzerland) 13, 6204–6216. https://doi.org/10.3390/s130506204

Duţu, G., Cristea, C., Ede, B., Hârceagǎ, V., Saponar, A., Popovici, E.J., Sǎndulescu, R., 2011. The electrochemical behavior of some local anaesthetics on screen printed electrodes modified with calixarenes. Farmacia 59, 147–160.

Goyal, R.N., Gupta, V.K., Oyama, M., Bachheti, N., 2006. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem. commun. 8, 65–70. https://doi.org/10.1016/j.elecom.2005.10.011

Kefala, G., Economou, A., Voulgaropoulos, A., 2004. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 129, 1082–1090. https://doi.org/10.1039/b404978k

Laxer, M., Capomacchia, A.C., Hardee, G.E., 1981. Intramolecular Hydrogen-Bonding in Beta Beta Adrenergic Blocking Agents. Talanta 28, 973–976.

Li, X., Wang, Y., Sun, X., Zhan, T., Sun, W., 2010. Direct electrochemistry and electrocatalysis of hemoglobin on carbon ionic liquid electrode. J. Chem. Sci 122, 271–278. https://doi.org/10.1016/j.colsurfb.2010.02.014

Lourencao, B.C., Silva, T.A., Fatibello-Filho, O., Swain, G.M., 2014. Voltammetric Studies of Propranolol and Hydrochlorothiazide Oxidation in Standard and Synthetic Biological Fluids Using a Nitrogen-Containing Tetrahedral Amorphous Carbon (ta-C:N) Electrode. Electrochim. Acta 143, 398–406. https://doi.org/10.1016/j.electacta.2014.08.008

M.C. Daniel, D.A., 2004. Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward. Chem. Rev. 104, 293– 346.

Martı́nez, V., Maguregui, M.I., Jiménez, R.M., Alonso, R.M., 2000. Determination of the pK(a) values of β-blockers by automated potentiometric titrations. J. Pharm. Biomed. Anal. 23, 459–468. https://doi.org/10.1016/S0731-7085(00)00324-1

Narasimham, L., Barhate, V.D., 2011. Physico-chemical characterization of some beta blockers and anti-diabetic drugs - potentiometric and spectrophotometric pKa determination in different co-solvents. Eur. J. Chem. 2, 36–46. https://doi.org/10.5155/eurjchem.2.1.36-46.371

Nigović, B., Marušić, M., Jurić, S., 2011. A highly sensitive method for determination of β-blocker drugs using a Nafion-coated glassy carbon electrode. J. Electroanal. Chem. 663, 72–78. https://doi.org/10.1016/j.jelechem.2011.09.017

Ogrodowczyk, M., Marciniec, B., 2013. Comparative analysis of selected Β-blockers. Acta Pol. Pharm. - Drug Res. 70, 779–786.

Oliveira, G.K.F., Tormin, T.F., Sousa, R.M.F., De Oliveira, A., De Morais, S.A.L., Richter, E.M., Munoz, R.A.A., 2016. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chem. 192, 691–697. https://doi.org/10.1016/j.foodchem.2015.07.064

Pai, N.R., Patil, S.S., College, D.G.R., 2012. Available online www.jocpr.com Research Article Synthesis of Atenolol Impurities 4, 375–382.

Puig-Font, G.A.A., Laschi, S., Mascini, M., Sanfilippo, L., Merkoçi, A., 2008. Electrochemical stripping analysis, a powerful technique for real-time controlling of environment pollution from heavy metals. Proc. iEMSs 4th Bienn. Meet. - Int. Congr. Environ. Model. Softw. Integr. Sci. Inf. Technol. Environ. Assess. Decis. Making, iEMSs 2008 3, 1414–1419.

Qiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pK a) for human and veterinary antibiotics. Water Res. 38, 2874–2890. https://doi.org/10.1016/j.watres.2004.03.017

Quintino, M.S.M., Angnes, L., 2004. Batch injection analysis: An almost unexplored powerful tool. Electroanalysis 16, 513–523. https://doi.org/10.1002/elan.200302878

Recanatini, M., 1990. Partition and distribution coefficients of arlyoxypropanolamine β-adrenoceptor antagonists. J. Pharm Pharmacol 44, 68–70.

Shipway, A.N., Katz, E., Willner, I., 2000. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew. Chemie (International Ed. English) 39, 19–52. https://doi.org/10.1002/1439-7641(20000804)1:1<18::aid-cphc18>3.3.co;2-c

Silva, A.A., Silva, L.A.J., Munoz, R.A.A., Oliveira, A.C., Richter, E.M., 2016. Determination of Amlodipine and Atenolol by Batch Injection Analysis with Amperometric Detection on Boron-doped Diamond Electrode. Electroanalysis 28, 1455–1461. https://doi.org/10.1002/elan.201501138

Srivastava, R.K., Chen, Q., Siddiqui, I., Sarva, K., Shankar, S., 2007. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/WAF1/CIP1. Cell Cycle 6, 2953–2961. https://doi.org/10.4161/cc.6.23.4951

Tadi, K.K., Motghare, R. V., 2016. Voltammetric Determination of Pindolol in Biological Fluids Using Molecularly Imprinted Polymer Based Biomimetic Sensor. J. Electrochem. Soc. 163, B286–B292. https://doi.org/10.1149/2.0501607jes

Takács-Novák, K., Avdeef, A., 1996. Interlaboratory study of log P determination by shake-flask and potentiometric methods. J. Pharm. Biomed. Anal. 14, 1405–1413. https://doi.org/10.1016/0731-7085(96)01773-6

World-Anti Doping Agency, 2021. The 2021 WADA Prohibited List. World Anti-Doping 1–24.




DOI: http://dx.doi.org/10.52031/phrase.v1i1.149

Refbacks

  • There are currently no refbacks.